Model Categories by Example Lecture 5

Scott Balchin

MPIM Bonn

Recap

Let C be a model category and K a set of objects of C.

• A morphism $f: A \rightarrow B$ in C is a *K*-coequivalence if

 $map(X, f): map(X, A) \to map(X, B)$

is a weak equivalence in \mathbf{sSet}_{Kan} for each $X \in K$.

• An object $Z \in C$ is *K*-colocal if

 $map(Z, f): map(Z, A) \to map(Z, B)$

is a weak equivalence in \mathbf{sSet}_{Kan} for any *K*-coequivalence.

The *right Bousfield localization* at *K* of *C* is the model category $R_K C$ with underlying category of *C* such that the:

Torsion objects

Preservation of properties

Monoidal model categories

A symmetric monoidal model category is a model category C equipped with a closed symmetric monoidal structure $(C, \otimes, 1)$ such that the two following compatibility conditions are satisfied:

(1) (Pushout-product axiom) For every pair of cofibrations $f: X \to Y$ and $f': X' \to Y'$, their pushout-product $f \Box f': (X \otimes Y') \coprod_{X \otimes X'} (Y \otimes X') \to Y \otimes Y' \qquad \Rightarrow X \otimes X \cong O$

is also a cofibration. Moreover, it is a acyclic cofibration if either f or f' is. (2) (Unit axiom) For every cofibrant object X and every cofibrant resolution $\emptyset \hookrightarrow Q\mathbb{1} \xrightarrow{\checkmark} \mathbb{1}$ of the tensor unit, the induced morphism $Q\mathbb{1} \otimes X \to \mathbb{1} \otimes X$ is a weak equivalence.

Monoidal model categories

Closed
Proposition: Let
$$\mathcal{E}$$
 be a monoidal model category. The $H_{\mathcal{D}}(\mathcal{E})$
is also closed monoidal with tensor structure
 $\left(\otimes^{4}, \mathcal{PI} \right)$

Examples

+ If R is a comm. ring then Ch(R) proj is monoidal model cat w.r.t & product of chan complexes ⇒ being a monoidal model cat is not preserved under ! Ch (R) inj is ravely Monoidal! Quiller Equivalence. ELR=R R Q O CS Z/2 $(\mathbb{Z} \hookrightarrow \mathbb{Q}) \circ (\mathbb{O} \hookrightarrow \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{O}$ not an injective cogistration.

Arrow categories

Let 6 be combinatorial model $I = (\bullet \rightarrow \bullet) \quad Arr(E) = E^{\perp}$ Assume moreour that 6 is symmetric moneidal model cat (⊗, ⊈) Idea: Arr (E) has R dyour monoidal structures playing nicely with proj linj model.

The tensor product monoidal structure on $Arr(\mathcal{C})$ is defined as

$$X_0 \otimes Y_0 \xrightarrow{f \otimes g} X_1 \otimes Y_1$$

for morphisms $f: X_0 \to X_1$ and $g: Y_0 \to Y_1$. The monoidal unit in this structure is $\mathbb{1} \to \mathbb{1}$.

The *pushout-product monoidal structure* on $Arr(\mathcal{C})$ is defined by the pushout-product

$$(X_0 \otimes Y_1) \coprod_{X_0 \otimes Y_0} (X_1 \otimes Y_0) \xrightarrow{f \square g} X_1 \otimes Y_1 \qquad \text{ white - Tau}$$

for morphisms $f \colon X_0 \to X_1$ and $g \colon Y_0 \to Y_1$. The monoidal unit in this structure is $\emptyset \to \mathbb{1}$.

Monoidality from homotopy

Left Bousfield localization .vs. monoidal structures

Left Bousfield localization .vs. monoidal structures

Left Bousfield localization .vs. monoidal structures

Let N= Fz
$$\oplus$$
 Fz. $a = (1,0)$ $b = (0,1)$
(12) $a = b$
(123) $a = b$
(123) $b = a + b = c$
 $\Rightarrow f - trived$
N $\otimes_{Fz} N$ has $E_z - invasiant$ element $a \otimes a + b \otimes b + c \otimes c$.
 $\Rightarrow N \otimes_{Fz} N$ is not $f - trivel$.
 $\Rightarrow L_z R - mod_{SL}$ is not q MMC

Let C be a monoidal model category. A left Bousfield localization of C is said to be *monoidal* if L_SC is a monoidal model category and the Quillen functor $C \to L_SC$ is monoidal.

Let C be a monoidal model category, then we say that a cofibrant object $X \in C$ is *flat* if $f \otimes X$ is a weak equivalence whenever f is a weak equivalence.

Proposition: Let C be a cofibrantly generated monoidal model category in which all cofibrant objects are flat, then a left Bousfield localization L_SC is a monoidal Bousfield localization if and only if every morphism of the form $f \otimes id_K$ is an *S*-local equivalence where $f \in S$ and *K* cofibrant.

...and the rest

* Stability

;